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Abstract

Asymptotic regimes of geophysical dynamics are described for different Burger number limits. Rotating

Boussinesq equations are analyzed in the asymptotic limit of strong stratification in the Burger number

of order one situation as well as in the asymptotic regime of strong stratification and weak rotation. It

is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the

full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with ver-

tical shearing of this invariant are deduced. Statistical dephasing effects induced by turbulent processes

on inertial-gravity waves are evidenced. The 'split' of the energy transfer of the vortical and the wave

components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero

to infinity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy

spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the

anisotropic rotation/stratification time scale which depends on the vertical aspect ratio parameter. In-

termediate asymptotic regime corresponding to strong stratification and weak rotation is analyzed where

the effects of weak rotation are accounted for by an asymptotic expansion with full control (saturation)

of vertical shearing. The regularizing effect of weak rotation differs from regularizations based on vertical

viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and

geostrophic departure) are obtained.
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1 Introduction

The turbulent flows that are subject to rotation and stratification have many important applications in

geophysics and engineering (Fernando and Hunt, 1996; Hopfinger, 1989). An important class of geophysical

flows can be characterized as strongly rotating and strongly stratified with both effects playing an important

role in the dynamics. This is the so called Burger number of order one regimes where the effects of rotation

and stratification enter at the same order in asymptotics (McWilliams 1985). One of the major difficulties

encountered in understanding dynamics of geophysical flows is the influence of the oscillations generated by

the rotation and stratification. One major effect of rotation and stratification is through "phase scrambling"

for the wave phase. In this paper rotating Boussinesq equations are analyzed in the asymptotic limit of

strong stratification in the Burger number of order one situation as well as in the asymptotic regime of

strong stratification and weak rotation.

The very useful and thought provoking multi-scale analyses of rotating/stratified turbulence is presented

in Riley et al. (1981), Lilly (1983), McWilliams (1985). In particular, they argue that the velocity field

of a rotating, stably stratified fluid may be regarded as a superposition of waves which are modulated on

the longer turbulence time scale. In our approach, the collective contribution to the dynamics made by

waves is accounted for by rigorous KAM (Kolmogorov-Arnold-Moser) type theory and rigorous estimates

of wave resonances and quasi-resonances via small divisors analysis. Our theory handles rigorously 3-waves

resonances, but goes much deeper into the structure of quasi 3-wave resonances and their contributions.

This mathematical approach was initiated in Babin, Mahalov and Nicolaenko (henceforth BMN) (1995),

Mahalov and Marcus (1995) in the context of geophysical flows. In Bartello (1995), the relative physical

importance of different resonances is discussed in depth. In this paper we present the physical predictions

and implications of our rigorous mathematical analysis. Interactions between internal waves and the vortical

(quasi-geostrophic) modes remain as one of the important questions to be addressed by strong interaction

theory (Mfiller, Holloway et al., 1986; Warn, 1986; Farge and Sadourny, 1989; Lelong and Riley, 1991).

The governing flow equations for rotating stably stratified fluids under the Boussinesq approximation are

cgtU+U.VU+2Qoe3 × U=-Vp+/)I e3, V.U =0, (L1)

COtp1 + U . _7pl = -N_U 3, (1.2)

where rotation and mean stratification gradient are aligned parallel to e3 = [0, 0, 1]. Here U = (U 1, U 2, U 3) is

the velocity field and Pl is the buoyancy variable; No is the Brunt-V/iis/il_i frequency for constant stratification

and f_0 is the frequency of background rotation, f0 = 2f20. We focus on inviscid Eqs. (1.1)-(1.2) or with

small uniform viscosities.



Nowweintroduceusefulnon-dimensionalparameters.Let Uh be a characteristic horizontal velocity

scale. Let H and L be vertical and horizontal length scales and a3 = H/L is the aspect ratio parameter. We

define Froude numbers based on horizontal and vertical scales:

Fh = Uh/LNo =- 1/N, F_ = Uh/HNo = Fh/a3.

The classical Rossby and anisotropic Rossby number are defined as follows

Ro = Uh/2Lf_o - 1/2ft - 1/f, Roa = a3 Ro.

(1.3)

(1.4)

The time is dimensionalized using the turbulence time scale L/Uh. In the Burger O(1) regime ROa _ Fh.

We are not taking a3 -+ 0; rather its value is fixed by shallowness of the atmosphere, aa _ 5 x 10 -3 to 10 -2

for synoptic scales. Its smallness effectively downsizes Roa _ 5 x 10 -4 to 10 -3, as Ro _ 0.1 in midlatitudes.

For mesoscales, L ,-_ 100kin, aa _ 10 -1 and Roa _ 10 -2. The anisotropic Rossby number ROa or/and the

vertical Froude number Fv control our uniform error estimates.

The Burger nmnber characterizes relative importance of the effects of rotation and stratification (McWilliams,

1985):

2 "_ ",' 2
Bu Ro_/Ft _ - Ro./F; =_ N2a,2/f2 2 2 2= = N d a3/f 6 . (1.5)

In Eqs. (1.3)-(1.4) f = /_o -1 and N = Fj_-1 are dimensionless rotation and Brunt-V/iis_ilg. parameters,

respectively. The relative importance of rotation/stratification is measured by the Burger number with

Bu << 1 corresponding to rotation dominated and Bu >> 1 corresponding to stratification dominated

flows. Herring and Mdtais (1989) observed horizontal layering of the velocity field in numerical simulations

of stratified turbulence, while Bartello et al. (1994) noted the formation of quasi-two-dimensional structures

in rotating turbulence.

Fourier series will be used in this paper to represent physical fields in a parallepiped [0, 27r] × [0, 27r/a2] ×

[0,27r/a3], 0 < a2 < 1. We denote k2/a2 by k2, k3/a3 by ]_a. Following Bartello (1995), it is useful

9 2 2 2 2to distinguish between three sets of wavevectors k (kl, k2/a2, k3/a3), ]kl 2 = k_ + k2/a 2 + k3/a3: the

barotropic set {k : k3 = 0}, the set with only vertical variability {k : k_ = k2 = 0}, and the remaining

baroclinic vectors {k : k_ + k_ ¢ 0, k3 ¢ 0}. Then the operation of vertical averaging corresponds to

projection on barotropic fields; the operation of horizontal averaging corresponds to projection on fields with

only vertical variability. In this paper as well as in our previous work (BMN, 1996a, b, d) we emphasize the

important role of operations of vertical and horizontal averaging in investigations of rotating and stratified

flOWS.

Regimes of geophysical dynamics presenting the global picture for small Froude or Rossby numbers are

shown in Figure 1 which summarizes the physical implications of our mathematical analysis. Since we are
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not taking a3 -+ 0, either Fh or Fv can be used in description of asymptotic regimes. Then Fr denotes

either of these numbers. The rotation dominated case corresponding to ROa --+ O, Bu -+ 0 and Fr finite

was considered in BMN (1995), Zhou (1995), BMN (1996a, c, d, e), Mahalov and Zhou (1996) (Figure

1, vertical axis). In this case we proved the generalized Taylor-Proudman theorem establishing splitting

between vertical averages of U, Pl (two dimensional- four component, 2D-4C barotropic fields) and reduced

ageostrophic field. Following Reynolds and Kassinos (1996) 2D-4C refers to fields with four components

depending on two variables xl and x2; 3D-2C refers to fields with two components depending on three

variables xl, x2 and x3 etc. By splitting we mean that the barotropic field decouples from the ageostrophic

one, without feedback from the latter onto the former, to the lowest order. In the limit N -+ 0, the usual

quasi-geostrophic field does reduce to vertically averaged fields; this is what is meant by "geostrophic" in this

limiting context. In this limit vertical shearing is fully controlled which is reflected in adiabatic invariants

associated with vertical shearing (exact conservation laws in reduced equations), with U t = (U, pl)

d_ I 12dxldx2dx3 = 0. (1.6)
(JX 3

In the limit N --+ 0 the temperature decouples from the dynamics aud behaves as a passive scalar. The

dynamics of vertically averaged velocity fields reduce to classical 2D-3C Euler equations and are subject

to inverse energy cascades in U 1, U 2 as in 2D turbulence. For Bu --+ 0 we have shown rigorously that

energy cascades for the ageostrophic (AG) field are completely frozen in x3 and the dynamics is pure phase

turbulence (BMN, 1996a,c,d,e); freezing of energy cascades in X 3 for the "baroclinic" component follows

from (1.6). In pure phase turbulence, the amplitudes of the ageostrophic modes remain constant in absolute

values; turbulent dynanfics are restricted to the phases of the ageostrophic modes. The ageostrophic field is

phase locked to phases associated with vertically averaged vertical vorticity and vertical velocity which are

advected by 2D turbulence of vertically averaged fields. There is no slaving of the amplitudes of ageostrophic

modes by the 2D turbulence, only phase locking. We calculated Doppler phase shifts induced by turbulence

of vortical (vertically averaged) fields on inertio-gravity waves in this limit. In the case of 3D rotating Euler in

the small anisotropic Rossby number situation we described regimes with no energy flux in the ageostrophic

(AG) component and formation of KAM-type regimes with frozen in x3 ageostrophic cascades (pure phase

turbulence, frozen turbulence). Sinfilar freezing of energy cascades was observed by Farge (1988) in the

context of rotating shallow-water equations and in Pushkarev and Zakharov (1996) in numerical experiments

describing turbulence of capillary waves.

Next is the regime of strong rotation and weak stratification as shown in Figure 1. Besides the operation

of vertical averaging there is a piece of 3DQG (quasi-geostrophic, Pedlosky 1987) which plays an important

role in the dynamics. It is formally obtained by expanding 3DQG equations in a small parameter N/f.
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Thisprocedureissimilarto theonedescribedin Section4for theregimeofstrongstratificationandweak

rotation. Thecorrespondingreducedequations,higherordercorrectionsandmathematicalconvergence

resultsfor thecaseof balancedandunbalancedinitial dataarepresentedin Avrin, Babin,Mahalovand

Nicolaenko(henceforthABMN)(1996).

Astheeffectsof stratificationareincreasedfurther(seeFig. 1)AGcascadesbecomepossible.In the

limit of strongrotationandstrongstratificationcorrespondingto Roa -+ 0, Fr _ 0, but Bu = O(1)

we established splitting between 3DQG and the reduced ageostrophic field (BMN, 1996b) confirming the

similar splitting for rotating shallow-water equations which we obtained in Mahalov and Marcus (1995)

and for rotation-dominated case in BMN (1995), (1996a). Again, by splitting we mean that the QG field

decouples fl'om the ageostrophic one. Dynamics of AG further splits along uncoupled resonant quadruplets of

Fourier rays with AG energy conserved on each resonant quadruplet of rays. Energy cascades are now allowed

(unfrozen) for the ageostrophic field but they are restricted to families of 4 rays in Fourier space. Energy

transfers (direct and inverse cascades) are not prohibited but restricted on uncoupled families of resonant

four rays for AG field. Direct energy cascades of AG field provide meehanisnl for nonlinear geostrvphic

adjustment. This is fundamentally different from the rotation dominated regimes where AG cascades are

frozen. Spectral differential molecular viscosities for QG and AG fields with explicit dependence on the

rotation/stratification parameters behave differently. Let/21 and/22 be the kinematic viscosity and the heat

conductivity, respectively; the ratio/21//22 is known as the Prandtl number. Through a simple computation

of 2-wave resonances in the Craya-Herring basis (Lesieur, 1987) the effective differential spectral molecular

viscosities/2Qc, and /2AG are given by

Ifi"l_ (1.7)

where _ = f/:V, I_'1_ = ,_ + ,_/a_. It shows that dissipation affects QG and AG fields differently. This

impacts on direct numerical simulations of QG fields in the context of numerical simulations of atmospheric

flOWS.

Partial control of vertical shearing is obtained allowing us to prove long time existence of solutions of

inviscid Boussinesq equations (BMN, 1996b and Section 6). Also, a flow which is initially wave dominated

remains wave dominated even through decay (confirming M6tais et al., 1996). In Section 3 we show that

horizontally aueraged buoyancy variable /91 is an adiabatic invariant (this result is true for all resonances

including 3 wave resonances); we calculate Doppler phase corrections associated with dd_ Pl to a linear profile

(constant No). This confirms and generalizes the work of Legras (1980) on phase shifts who showed the

existence of statistical dephasing effects induced by turbulent processes on Rossby waves. Frequency shifts

induced by turbulent processes on inertial waves were calculated in BMN (1996a); the case of frequency

shifts induced on waves in rotating shallow-water equations was considered in BMN (1996c, e). As the



effectsofstratificationareincreased(seeFig.1)verticalshearingdynamicsin theageostrophicfieldincrease

andisconvenientlycharacterizedusingthedivergentvelocitypotentialx(t, x l, x2, x3) given by the formula

X = (--Ah)-lOU3/Ox3 which is coupled to geostrophic departure. The geostrophic departure -ET_pl +

fo-_curlU.e3 characterizes imbalance in the vertical motion or omega equation (Eqs. (1.16)-(1.17)). Up

to a normalization, the divergent velocity potential X, the geostrophic departure and 3DQG mode form the

Craya-Herring cyclic basis which is used in this paper to represent physical fields. This is further described

below.

In the inviscid regime Fr --_ O, Roa = O(1), Bu --+ +c_ (Figure 1, horizontal axis) we prove that there is

no bound on vertical shearing associated with the dynamics of 3D-2C (3 dimensional, 2 components) decou-

pled pancakes (parametrized in x3) with different pressures at every level; this leads to unbalanced dynamics

at the lowest order. There is no saturation of the exponential build-up of vertical enstrophy (in small vertical

scales) for AG dynamics as the latter is coupled to the quasi 2D field thru OU_2D/OX3, OU_2D/OX 3. The

major problem is lack of boundedness of vertical shearing in quasi 2D equations (Lilly, 1983). We show that

horizontally averaged 01(x3), U2(x3), Pl (x3) are adiabatic invariants providing a feedback onto AG turbu-

lence. 01, U 2 are adiabatic invariants only if _ = 0; otherwise, they undergo rigid t2- rotation (this result

holds for all resonances including the 3 wave resonances). However, these adiabatic invariants are not enough

to saturate vertical shearing. Worse the lack of boundedness of OU_2D/Cgx3 , cOU_2D/OX3 leads to explosive

exponential growth of the AG dynamics. Of course, control of vertical shearing can be achieved trivially by

introducing vertical viscosity; however, this corresponds to a non-physical laboratory set-up rather than the

real atmosphere (A. Majda, private communication), or a poorly-resolved (in x3- scales) numerical model

(P. Bartello, private communication).

In the intermediate asymptotic regime corresponding to strong stratification and weak rotation (Bu --+

+oc, f/N small) the effects of weak rotation on the dynamics are accounted for by an asymptotic expansion

in a small parameter # = f/N (Section 4). Full saturation of vertical shearing is obtained for all times.

Equations describing balanced dynamics are intermediate between 3DQG equations valid in the regime Bu =

O(1) and quasi-2D decoupled pancakes without any control of vertical shearing (Lilly, 1983). In this paper we

show how weak rotation regularizes vertical shearing and calculate its effects on AG dynamics. Our reduced

equations have a conservation law associated with vertical shearing which allows to control AG vertical

scales for all times. There is no need to resort to vertical viscosity as the principal stabilizing mechanism

(Reynolds number Re _ 1012 in atmospheric flows). Two scalar decoupled equations for ageostrophic

components (divergence velocity potential and geostrophic departure) are obtained. These equations have

coefficients depending on regularized quasi-2D fields and can be used for more accurate and robust numerical

simulations of geophysical flows in the regime of strong stratification and weak rotation. AG dynamics is



drivenbyregularizedverticalshearingof thepancakes.

In thispaperweemphasizephysicalpredictionswhichfollowfromrigorousmathematicalanalysisof

Boussinesqequationsin thestronglyrotating/stratifiedBu = O(1) regime as well as in the asymptotic

regime of strong stratification and weak rotation. The mathematical theory is based on rigorous small divisor

estimates and KAM type (Kolmogorov-Arnold-Moser) theoretical considerations to rigorously control wave

resonances, especially the 3-waves of the fast-fast-fast resonances (Figure 2).

On the physical side, for the Bu = O(1) regimes discussed in Sections 3 and 5, we establish statistical

dephasing effects induced by turbulent processes on inertio-gravity waves with 3DQG turbulence acting to

renormalize both frequency and viscosity of the waves. We generalize the work of Legras (1980), Carnevale

and Martin (1982). In particular, we calculate Doppler phase corrections associated with the fact that

horizontally averaged buoyancy variable pl is an adiabatic invariant. Namely,/_1 (xa) has a O(e) variation on

large times when Roa _ Fh "_ e. Rigorous mathematical analysis based on small divisor estimates shows that

3 waves fast-fast-fast resonances are rare in the Bu = O(1) atmospheric_regimes (BMN, 1996b and Section

6) as well as in Bu << 1 regimes (BMN, 1996a). In fact, just switching on even weak rotation destroys

the 3-waves resonances found in the pure stratified case f = 0. One of the hardest parts of our analysis is

to estimate the total probabilities of quasi-resonances, that is the width of Arnold tongues coming out of

points (set of measure zero) where 3 wave resonances are possible (see Figure 2). These resonances are not

neglected but rather weights are assigned to them according to their importance (BMN, 1996d and Section

6). Even 3 waves resonances do not alter the global picture: they correspond to higher order corrections

("Arnold drift" ).

The width of Arnold tongues scales algebraically with ROa (see Corollary 6.1 and Figure 2). For synoptic

scales at midlatitudes, L _ 2000 kin, H _ 10 kin, the width (normalized probability of a 3 wave resonance)

is of order (H/L) 2 = (5 x 10-a) 2 and it is of order (10-2) _ at mesoscales (L _ 100 kin); 3 wave interactions

become significant only for tall columns (see Section 6). In regions free of fast-fast-fast interactions (set of

full Lebesgue measure) nonlinear geostrophic adjustment takes place via "catalytic" interactions between one

QG mode and two AG modes confirming the insight and numerical simulations of Bartello (1995). Bartello

(1995) also discusses fast-slow-slow interactions, which are non-resonant. In our work, they appear at the

next order in Roa or 1/N at Bu = O(1), and contribute to the feedback of the ageostrophic field onto

the QG one (ABMN, 1996). Inside Arnold tongues where fast-fast-fast 3 wave interactions are possible we

expect Arnold drifts associated with neglected higher order resonances. Guided by KAM theory in finite

dimensional systems and the fact that Arnold tongues are very narrow in our problem (Section 6), we expect

that these drifts will be slowly evolving (cf. Figure 2). Thus we expect the dynamical picture to be intact even

inside Arnold tongues where 3 wave interactions are possible. Our analysis (Section 6) proves that 3 wave
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interactions will not contaminate large scale dynamics. Breakdowns can occur only locally corresponding to

small horizontal scales. In this case a local anisotropic Rossby number based on local horizontal scale will

become large and both local breakdown and collapse leading to fully 3D dynamics (locally) will be possible.

We have analyzed such 3D instabilities in an idealized case of rotating columnar flows (Mahalov, 1993). Here

our rigorous mathematical analysis amounts to the following: the probability of such a localized breakdown

to 3D turbulence to extend to larger scales via a catastrophic inverse cascade is very small. This is indeed

what is observed in the atmosphere, where near balanced dynamics are sustained for all times in the larger

scales. The regime Fr --+ O, Roa = O(1), Bu -+ oo requires a special attention. In this regime 3DQG

equations degenerate to quasi-2D equations lacking control of vertical shearing and leading to unbalanced

dynamics at the lowest order. To this end, a regularization based on weak rotation is proposed in Section 4.

In BMN (1996b) we established splitting between 3DQG and reduced ageostrophic field; here we show

that the structure of reduced ageostrophie equations (via Craya-Herring cyclic basis) implies upscale (inverse)

energy transfer of rotational (vortical) energy via. QG mode versus downseale cascade of wave energy via

slow-fast-fast resonant catalytic interactions (following Bartello, 1995 notations). In cases Bu = O(1) and

Bu >> 1, AG field satisfies uncoupled families of equations on 4 rays in Fourier space. As the effects of

stratification are increased direct cascade of AG energy (along these rays) toward small scales is enhanced.

In Section 5 we introduce the anisotropic phase coherence tensor and model anisotropy in Bu = O(1) regimes

of geophysical turbulence. There is a spectral gap (i.e. a power law scaling break) between QG and AG

spectrum with AG spectrum being shallower than the typical k -a QG spectrum; it varies smoothly between

k --_ and k -5/3 which is in agreement with numerical simulations of Mdtais et al. (1996), Bartello et al.

(1996).

A possible emerging picture of Burger O(1) turbulence is that 3DQG turbulence being a guiding center is

corrupted by phase turbulence and Doppler phase shifts; with the dynamics of the AG field being constrained

to a uncoupled 4-rays families, with direct AG cascade restricted to the latter. The feedback of AG field on

QG dynamics can be computed at next order in Fr or Roa (ABMN, 1996).

On the mathematical side, the challenge is to prove that dynamics of limit equations uniformly closely

approximate geophysical turbulence in regimes:

1. N = O(1), _ >> 1 (rotation dominated regime), Fr = 1/N.

2. N >> 1, f_ >> 1, Bu = O(1) (strongly rotating/stratified Burger number of order one regime).

One needs uniform error estimates in Froude and Rossby numbers. It is important to realize that "weak"

convergence results, "filtered" and o(1) error estimates cannot achieve this. In BMN (1996 a,b,d) and here

(Section 6) we obtain strong convergence results with uniform error estimates on sets of full Lebesgue measure

with initial data being in the Sobolev space H r (and even H 4) for both Bu = O(1) and rotation dominated



regimes.Thisis incontrastwith theworkofEmbidandMajda(1996)whereonlylocalexistenceresultsare

established.FollowinggeneraltheoremsofSchochet(1994),theystateapointwiseconvergencetheoremwith

o(1) error on a time interval [0, T]; since they include (for Bu = O(1)) 3-wave resonances they cannot give

any uniform error estimates in the parameters. Our theory handles rigorously 3-waves resonances, but goes

much deeper into the structure of quasi 3-wave resonances and their contributions. Moreover, the interval

[0, T] in Embid and Majda (1996) is small where T can be as bad as any local time of existence of original

3D Euler/Boussinesq equations, and it is in fact limited by potential 31) vortex singularities of the full 3D

Euler. Embid and Majda (1996) miss the regularizing effects of strong rotation and stratification. As Roa

and Fh --+ 0, Bu = O(1) we prove that T -+ +co for (1.1)-(1.2). We agree with them only as to the QG

operator decoupling, which we obtained independently in BMN (1996b) for Boussinesq equations.

Now we describe the structure of reduced equations which will be derived in Section 3 for Bu = O(1).

In the reduced equations the total velocity splits into the quasi-geostrophic field wqo(t) satisfying 3DQG

(quasi-geostrophic) equations

cgtwQa = Bl(w0a, wQa), (1.s)

and the ageostrophic component satisfying in principle general equations of the type:

Ot WAG' -_ B2(w QG, WAG) Jc B3(WAG, WAG). (1.9)

In the case when the balanced QG dynamics are absent, w@a(t) = 0, Eqs. (1.9) reduce to equations describing

wave turbulence (e.g. Zakharov et al., 1992):

OtWAG = B3(WAG, WAa). (1.1o)

We prove that (1.9) holds only within very narrow Arnold tongues (Figure 2) with infinitesimal probability

(Section 6); we do not just drop B3 with some ad-hoc scMing argument. In the real atmosphere situation a

near balance state is sustained and the quasi-geostrophic (balanced) field is present and it is dominant. In

Babin, Mahalov and Nicolaenko (1996b) and here (Section 6) it is shown using small divisor estimates that

for ahnost all Bu and a3 = H/L only "catalytic" interactions rule AG dynamics:

OtWAG -_ B2(WQG, WAG) (1.11)

where wQa(t) is a solution of 3DQG equations. Such interactions do not influence the slow QG modes, but

act to transfer fast AG energy downscale (Bartello, 1995). Further, for all Bu, all a8 and ahnost all domain

aspect ratios a2, B2(wQa, WAG) splits in Fourier space into uncoupled, restricted interaction operators on 4
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raysfamilies

00/(hi/m2 = A 0 -t-1 0 n2 • (1.12)

m3 0 0 4-1 n3

In Eqs. (1.11) direct cascades of energy are allowed for WAG through B2 (wQa, WAG). Wave energy cascades

toward smaller scales and is subject to strong dissipation in AG mode, via the anisotropic viscosity UAa

in (1.7).

An important observation on the nature of interactions in Eqs. (1.11) and their impact on AG dynamics

(AG cascades/fi'ozen AG turbulence) is now in order. The nature of interactions in Eqs. (1.11) is funda-

mentally different in rotation dominated and stratification dominated regimes. In the rotation dominated

case (see Fig. 1) corresponding to Roa --+ 0, Bu --+ O, and Fr finite interactions in Eqs. (1.11) for n-

th, n = (nl, n2, n3) Fourier mode are restricted to wavenumbers rh = (ml, rh2, rh3) satisfying rna = 4-n3,

]rh'[ = Ih'], k + rn = n (BMN, 1996a). Thus, modes m which interact with a given mode n lie on the same

energy shell as n. Interactions in (1.11) are localized in Fourier space and do not extend to zero or infinity.

This special nature of interactions in the rotation dominated regime implies freezing of energy cascades in

x3 in Eqs. (1.11). Similar fi'eezing of energy cascades of AG field (frozen AG turbulence) was proven for

rapidly rotating shallow-water equations in Mahalov and Marcus (1995), BMN (1996c). In particular, it was

shown that in the case of rapidly rotating shallow-water equations interactions in _,' = (hi, fi2) AG equation

are restricted to wavenumbers ,h'= (,,9,1, ,7"/2) satisfying I<'l = I,Vl, k'+ m'= ,9,'.

The nature of interactions in (1.11) drastically changes when stratification is increased (see Figure 1). As

shown in this paper, in the Bu = O(1) as well as Bu >> 1 regimes interactions for the n-th mode in (1.11)

are restricted to four rays families given by (1.12) for almost all a2. Thus, interacting modes lie on families

of four rays connecting 0 and infinity in Fourier space. AG energy cascades are now possible along these

rays from small wavenumbers (large scales) to large wavenumbers (small scales).

Vertical shearing operations in B2(wo6, , WAC;) are conveniently expressed in terms of divergent velocity

potential X- We recall that X and _b are related to a horizontal velocity field Uh by the formula Uh =

e3 X Vh_b + VhX. The operator B.(woa ,waa) takes an especially simple form in the Craya-Herring cyclic

basis. In this basis the first component of WAG is simply the divergent velocity potential X = _ ,,j 0,_

or in Fourier space

.fi3 1 1
X,,. = -_-_ _/_ *% (1.13)

0 1
where ii' = (n,, n2/a2), and the components of the full field in the Craya-Herring basis are (w,_, w,_, w2).

20 is the component of the quasi-geostrophic mode and w_, w,_ are the ageostrophic components. TheHere w,z
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importantroleofX in our AG operator B2 ties with the more classical theory of balanced models (Gent and

McWilliams, 1983a and 1983b) and the findings of Farge and Sadourny (1989), Farge (1988) on effects of

inertio-gravity waves and rotation on two-dimensional turbulence.

The second component w 2 of WAG in the Craya-Herring basis is related in a simple way to the vertical

motion or omega equation. We recall that the vertical velocity does not appear in 3DQG equations and the

whole purpose of manipulations leading to the omega equation is to obtain a diagnostic equation from which

vertical velocity component can be calculated (e.g. Holton, 1992; Gent and McWilliams, 1983a). We briefly

recall these calculations starting from Eqs. (1.1)-(1.2) written in the form (f0 = 2_0)

0tU+f0e3 ×U-pi ea=-Vp-U.VU, V.U=0, (1.14)

Otfll + N2U 3 : -U • _7fll. (1.15)

First, we apply the operator fo_curl to Eq. (1.14) and obtain a scalar equation by projecting the result on

OU 3

e3. Then we apply horizontal Laplacian to Eq. (1.15). Recalling that curl(e3 × U) • e3 = 0_, we obtain

by subtraction

Ot 2 2 2(N OVj, +(--Vhfll -_ fo W3) -- f02 ----G (1.16)

where G denote nonlinear terms; w3 = curlU • e3 is vertical component of the vorticity vector. The omega

equation is obtained by dropping Ot (-V'_pl + fo 00-_ w3) in Eqs. (1.16). Then we obtain a diagnostic equation

which is used to determine vertical velocity U3:

2 2 _ 0_ G.
-(N OV h + fd--_x_)U3 = (1.17)

Up to a normalization constant, second mode in the Craya-Herring basis is precisely the geostrophic departure

-V 2 (buoyancy) + f0 _ (vertical vorticity). It characterizes unbala,,ce in Eqs. (1.16)-(1.17). The geostrophic

departure has the form In I'Pl,, - f0n3(fi × Ut_) • e3 -- N0]fi'[2pn - f0n3(fi × U_,) • e3 in Fourier space. Since

_t2Nol n I P*_- f0na(_* × U t) "e3= w,_[_]]fi'l U_ "q2_, the geostrophic departure up to a normalization is precisely

the mode q2 in the Craya-Herring cyclic basis (see Eqs. (2.9)).

This paper is organized as follows. In Sec. 2 we recast the Boussinesq equations in the Craya-Herring

cyclic basis. This intrinsic coordinate system is particularly convenient for investigations of adiabatic con-

servation laws and global decoupling. Next in Sec. 3, we develop a methodology and procedure for studying

rotating Boussinesq equations in the strongly stratified limit. Here, the dynamical decoupling between the

vortical and inertial-gravity wave components of the total field is achieved. It is shown that horizontally

averaged buoyancy variable is an adiabatic invariant in the asymptotic state and phase corrections to buoy-

ancy time scale which are associated with vertical shear of the horizontally averaged buoyancy are obtained.

12



In Section4weanalyzeanintermediateasymptoticregimeof strongstratificationandweakrotationwith

effectivesaturationof verticalshearingof pancakesbyweakrotation(noverticalviscosityneeded).The

energyspectrumandspectraleddyviscositymodelsarededucedin Section5. Finally,in Section6 we

describetheuniformconvergenceresultsandtheregularizationofEuler-Boussinesqequations,asFh -+ 0,

Roa --_ 0, Bu = O(1). These results require much less differentiability than in BMN (1996a): now only four

derivatives on initial data are required for the most general convergence results on arbitrary long times.

2 Boussinesq equations in the Craya-Herring cyclic basis

We introduce a change of variables Pl = Np (Mdtais and Herring 1989) and combine velocity and buoyancy

variable in one variable U* = (U, p) after which Eqs. (1.1)-(1.2) written in non-dimensionM variables take

more symmetric form:

cltU t+U.VU t+fRU* =-Vtp-NSU t, V-U=0 (2.1)

where Vtp = (Vp, 0) and time was non-dimensionalized using turbulence time scale L/Uh. Here

(00)(01)R= , S= , J= , (2.2)
0 0 0 J 1 0

and R,_, S,_ will denote the action of R and S on n-th Fourier component, M = fR + NS. In this section

we write Boussinesq equations in the Craya-Herring cyclic basis and use this representation to perform time

averaging. Linear equations describing inertio-gravity waves are

OtU t + MU t = -Vtp, V - U = 0. (2.3)

Dispersion relation for inertio-gravity waves which are solutions of Eqs. (2.3) has the form

" _ n3/aal_12 - Ro_2(Bu__. +21fi,[2 f ", 2 _'_ ha2)=_lfi12 ..lfi'12 +Bu-l_) (2.4)

"_ 2 2 2 2 "-' 2 2whereI¢,1_ = n_+ .=/.u + _/_, I,_,'1_ = n_+ n2/a 2. Here]:gOais the anisotropicRossbynumberand Bu is

the Burger number defined by (1.4), (1.5). It follows from (2.4) that the effect of rotation and stratification

are not uniform on scales. In the case I_q/Inal >> 1 gravity waves are fast and inertial waves are slow.

On the other hand, for scales satisfying Inal/l_'l << 1 gravity waves are slow and inertial waves are fast.

Control of resonances coupling fast waves on small scales and fast waves on large scales can only be achieved

through a careful analysis of small divisors in resonances (BMN, 1996 a, b, d and Section 6).

The inertio-gravity wave propagator is the operator solution E(t) (E(0) = Id is the identity) to the linear

problem (2.3):

• (,) = E(t)_0; _(0) = _0 (2.5)
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where_(t) = (U(t),p(t)). The operator E(t) describes propagation of inertio-gravity waves. In the Craya-

Herring cyclic basis (Riley et al. (1981), M6tais and Herring (1989), Godeferd and Cambon (1994) present

developments in this basis for stratified flows without rotation) linear problem (2.3) restricted on the subspace

of divergence free vector fields reduces to the following 3 x 3 matrix for the n-th Fourier component:

0 0 0
w_g I =wn 0 0 -1 (2.6)

0 1 0

where zero eigenvalue corresponds to the quasi-geostrophic mode. We use the extended notation

_. = [rnl, rn2/a2, ma/a3, 0],0 < a2 _< 1,

and similarly for n, k. We introduce the orthonormal basis of the divergence-free subspace for n-th Fourier

mode:

p0n= i ,,i,0,0 ;])in. = 0 ; p2n=e4=[0,0,0,1]. (2.7)

The vectors Pok,Pom,Plk etc. are defined similarly. The vectors Pok,Plk,P2h" are orthonormal cyclic

vectors for the matrix S restricted on the divergence free Fourier subspace; let Pa be the projection on

divergence fi'ee vectors in the Hehnholtz decomposition (for the velocity component):

Ih'l (2.8)
PdS,_p0,_ = 0; PdSnpln = -¢nP2n; PdSnP2n = CnPln; Cn = _-.

The Pjn are the Craya-Herring basis for the purely stratified problem, already used by Riley et al. (1981).

In the case f ¢ 0 we use the following orthonormM basis

1 1
qon = --(NCnpo,_ + f_nP2n), qln = Pin, q2,_ = --(UCnp2n - f_nP0n) (2.9)

0.) n 0.)n

where

_'3 2 2 2 2 2

_,_ = -_, wn = N _ + f _,_. (2.10)

The vectors q0,_, ql_ and q2_ are orthonormal and form a basis in the space of divergence free vector fields.

In the case nl = n2 = 0 (this case corresponds to taking horizontal averages) we have from (2.9) (we have

used the fact that Plnln,=n2=0 = (_, _,0,0))

l 1 1 1

q0n = (0, 0, 0,1); q_=(V_,_,0,0); q2_ =(V_, V_ '0'0) (2"11/

where n = (O, 0, n3) denotes wavenumbers for which nl = n2 = 0. In this paper we use the overbar notation

for the operation of horizontal averaging

1 ji2_/.2_/__ F(t, xl,x2, xa)dxldx2. (2.12)P(t, _
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Forthematrixoflinearproblem

M_ = NS,_ + fRn (2.13)

the vectors (2.9) form a cyclic basis since, after projection on divergence-free vector fields via Helmholtz

decomposition:

PdMqon = 0, PdMql,_ = -w, q2_, PdMq2_ = w_qz_, (2.14)

2 f2 fornl =n_, =0and, as _ =

PdMq0n = 0, PdMqlr_ = -fq2_, PdMq2n = fqln. (2.15)

Any arbitrary divergence-free vector field U], can be written as

1 2
U_, = V°qo,_ + V_ ql_ + V_ q2,_. . (2.16)

We shall use the variables V to denote vector of coefficients corresponding to Urn: V, = [l_ °, Vn1, V2] =

[Vn°, V_], V'n = [V1, P_]. We denote by II_ _ the projection onto q0n (quasi-geostrophic mode):

rt_au_(_.) = _ v? ei"_;r, qon , HQGuI 0= E_ q0_.

Similarly, we define the projection IInG onto ageostrophic component:

1 V2 ", in.x AG _ _rl 2HAGu'_(X)=E(Vnqln+Inq2n)e , H. Un= .nqln+Vnq2n.

n

The action of the linear propagator on the Fourier components E(t) can be written in V-variables

E(t)[V °, V']n = exp(wntM'n)[V °, V'],. = [V °, exp(w,#a)V']. (2.17)

Here J, M',_ are given by

We have

(000) ( )M_= 0 0 -1 , J= 0 -1 , (2.18)
1 0

0 1 0

exp(w,_at) = cos(_t)I + sin(w,#)J. (2.19)

Obviously, E(t) represents vector rotation in V _, V2-plane; V ° component (called 3DQG) is not affected.

Note that. the relation between U and V variables is given by

_o = U t. "qon, V_ = U_, "ql,_, V_y = U_, "q'_n. (2.20)
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Clearly,Vn°* = -V_°,_ for real U(x).

The Boussinesq equations (2.1) in Fourier representation in V variables can be written in the cyclic

basis (2.9) as

o_v,_ -i _ i,i_. i, _= Okmn V£ V_:_ -- wn(M_nVn) ia (2.21)
k+m=n,il ,i2

where il,i2, i3 = 0, 1, 2, M' is the matrix M in V-variables given by (2.18). The coefficients Q_ are

determined from the equations

ili2i3
Qk,_,_ = (qi,k " rn)(qi_ . qi3n). (2.22)

The coefficients Q_, k + m = n, are explicitly given by a straightforward computation using (2.9), (2.22).

For the coefficient describing interaction of 0-modes (quasi-geostrophic) we obtain (n_A m' _= nlrn.2 --n2ml).

QOOO N fi' A _h'
kmn ---- _k_m_nli_llmllq (N 2 n'. r_/+ f2 fi3rh3). (2.23)

Since skew-symmetric in k, rn component of "_kmng}°°°makes no contribution to Eq. (2.21), we can use the

following "_kmn_°°°in Eq. (2.21):

QOOO N _' Am' f_ _) _V_._I_I _' A_'
km,_= ".'k"<Ikll'_l

where we have used I,al2_ = N_-I_'I _ + f2,hg. The coemcients Q000km,given by (2.24) is the familiar

coefficient in 3DQG equations written in cyclic basis. Other coefficients in (2.21) have the form

o12 fN_rn_,_(k' A _h') 2 r_102 fN(_z3k'. #tt -- _3]'r}ttI2)(ft3{i, '. _' -- k3l_.'l=') (2.25)

Q021 fN_._(n.(k'/_ ?_/)2 f)201 fN_.,._..(k' A rh')2
(2.26)

QOll N(k' A,n,')(¢,3n_J- _.' + In'l_ln_'l_ t-)101 ]V#n(k' A_')(_3_'" '_','- _31_.'12)
kmn _ , _'_mkn _ (2.27)

,_o2.0 N(t"A#"')(N_laq2li_'l'_+I'msnsm "_") O _'°2 N'%(k'A'h')(k_l{"'12 __{z"k') (2.28)

In addition, we have coefficients associated with the operation of horizontal averaging, where k = (0, 0, k3):

QO_OO _ooo ,-,ooo /-)(112 /-')021 /--}011 00_22
kmn = '°¢kr_m = Wkmn = O; = = _ = O."°¢ kmrz "_ kmn "_ kmn "°¢kmn (2.29)
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Also,(9/-li_° = 0 (il ¢ 0, i2 ¢ 0) and
"V krhn

QlO? N¢'_¢'_/ca, "_mk_ = _m_,_ = "_,,_k,_mkn -- /')20_1 [-)101 t-)2°? = 0. (2.30)
a) n

We note that V;V_ 2il io = P_i2ilV£ and then collecting terms in Eqs. (2.21) we define the symmetrized

011 /'3011 y)101 /::)012 /'3012 g1102 [_)021 ,q021 /3201 t5o22 r)o_2 r)202 (2.31)kmn _ "gkmn "_- _'_mkn _ _'gkmn z _'gkmn "Jr _¢rnkn, _kmn _ "gkmn -[- '_mkn, _"_kmn _ "gkmn _ _'_rnkn"

It implies that

#021kmn = 0 0-11kmn = 0 022kmn -_ O, 0 0-12kmn -- Nq)m(_n_3" (2.32)

02 n

3 The limit equations describing reduced dynamics

We write classical rotating Boussinesq equations using the variables V ill the basis (2.9); these equations

have the form (see Eqs. (2.21))

0tV,. + wnM:,.V_ = (B(V, V))_. (3.1)

Here M _ is the linear propagator operator corresponding to inertio-gravity waves given in cyclic V-variables

by Eqs. (2.17)-(2.18). We introduce this linear propagator directly into nonlinearity in (3.1) using the

change of variables V E(-t)v, V n ¢ [y0 vl M _= = exp(-co_M_t)vn where v = , , v 2] and is defined by (2.18).

Boussinesq equations (3.1) written in v variables have the form

Otv = B(t, v, v), B(t, v, v) = E(t)B(E(-t)v, E(-t)v). (3.2)

Equations (3.2) are explicitly time-dependent with rapidly varying coefficients. The following equations

describing reduced dynamics are associated with Eqs. (3.2) (BMN, 1996b):

T

= B(w,w),B(w(t),w(t))= B(s,w(t),w(t))ds. (3.3)

Clearly, when represented in Fourier modes, the right-hand-side of (3.3) will be determined by resonances

±wk ±w,_ ±w_ = 0 within terms of the type exp(i(±wa ±w,_ ±w,)s), see (2.17), (2.19). Projecting Eqs. (3.3)

on the 3DQG mode q0_ corresponding to the zero eigenvalue of the linear problem, we find that the limit

equations (3.3) describing reduced dynamics contain classical 3DQG equations as a completely decoupled

subsystem, a result already published in BMN (1996b). This confirms the QG decoupling of the reduced

equations after their projection on the mode corresponding to the zero eigenvalue which was also proven for

the rotating shallow-water equations and 3D rotating Euler equations (Mahalov and Marcus, 1995; BMN,

1995; BMN, 1996a; BMN, 1996b). In the case of 3D rotating Euler the reduced equations were projected
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onthesubspaceof 2D-3Cfieldsby meansof theoperationof verticalaveraging.Two-dimensional,three

componentsrefertofieldsthathavethreecomponentsanddependontwovariables.TheseareMFI (material

frameindifferentfields)uneffectedbyrotation(Ristorcelliet al., 1995; Speziale, 1989). In the case of rotating

shallow-water equations reduced equations were projected on the quasi-geostrophic mode and decoupling of

quasi-geostrophic equations was obtained and published in Mahalov and Marcus (1995) before Embid and

Majda (1996). In the important paper by Warn (1986) the same result for shallow-water equations had

been obtained based on formal two time scales expansions and Ertel's theorem. To prove the decoupling for

Boussinesq equations, Embid and Majda (1996) also used Ertel's theorem, which does not give insight into

the structure of the ageostrophic dynamics in the context of Boussinesq equations.

Now we ouline a new proof of decoupling of 3DQG equations in (3.3) We refer to BMN (1996a,b,c) and

Mahalov and Marcus (1995) for detailed proofs of splitting in Boussinesq, 3D Euler and rotating shallow-

water equations. By (3.2) and (3.3) the only active triadic interactions in the reduced equations (3.3) are

those satisfying the relation =t=wk±wm ± w,, = 0. We note that projection of Eqs. (3.3) on QG mode

(which corresponds to zero eigenvalue of the linear problem) leads to the additional constraint w_ = 0. Then

the conditions ±wk ± w,_ ± w_ = 0 and w, = 0 reduce to 2-wave interactions wk = w .... For N 2 _ f2 the

condition wA. = _m is equivalent to the condition Ik'l/Ikl = 1_,'l/17h] (equivalently, ¢k = ¢,_; see (2.8)).

Clearly, reduced equations (3.3) projected on QG mode involve only the coefficients qi_i_Qk,_,_ with i3 -- 0

(n = k + m). One trivial solution of _k = w,_ is wk = w,, = 0 which corresponds to the QG coefficient _000
"_ krnn"

An important observation is that other terms involving the coefficients Qqi_0k,_,, (il 7_ 0 or i2 ¢ 0) in Eqs. (3.3)

are annihilated when the resonance condition ¢k = ¢,_ is used. For the Boussinesq case, the detailed proof

can be found in BMN (1996b).

Thus, in the reduced equations (3.3) the total velocity splits into the limit quasi-geostrophic field

lJt(t, Xl, x2, x3) satisfying (3.12) and ageostrophic component satisfying equations of the type:

OtW AG = B2(l)t (t), WAG ) "_- B3(WAG , WAG ). (3.4)

In this paper we are interested in the situation when the quasi-geostrophic (balanced) field is present and

it is dominant. We explore the implications of the existence of the vortical mode (at mesoscales the vortical

mode represents quasi-geostrophic flows) on the dynamics. The major shortcoming of many existing theories

is that they neglect the interaction with the vortical (=potential vorticity carrying) mode of motion (Miiller

et al., 1986). The results of the study by Lelong and Riley (1991) provide further evidence that the role

of the vortical mode in influencing the evolution of strongly stratified flows may be significant and should

not be neglected. According to Miiller et al. (1986), interactions among internal waves and vortical modes

loom as one of the important questions to be addressed by a strong interaction theory. In BMN (1996 a-e)
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andherewepresentsuchstronginteractiontheorybasedonrigorousKAM typemathematicalanalysisand
smalldivisorestimates.

In BMN(1996b)andin Section6 it isshownthat themaincontributionto resonancesin thereduced
equations(3.4)isgivenbythetermB2(0_(t),WAa).Wearriveatthesameconclusionempiricallycomparing

ordersof magnitudeof thetermB2(Ut(t),WAa)andBa(WAa,WAG):

IBa(WAa, WAG)] ]WAa[

0.1 (3.5)IB2(O*(t), WAa)l

for synoptic scales at midlatitndes (e.g. Holton, 1992). Then equations become linear in WAC with coefficients

depending on arbitrary quasi-geostrophic field Ut (t):

OtWAG _--- B2(I_It(t), WAG). (3.6)

The numerical work of Bartello (1996) also shows that resonant 3-wave interactions are of secondary impor-

tance in the overall picture of interactions when both rotation and stratification are present and Bu = O(1).

They do not lead to slow-fast energy exchange and are difficult to resonate. Rigorous proof of this result was

given in Babin, Mahalov and Nicolaenko (1996b) using small divisor estimates and is discussed in Section 6.

Geostrophic adjustment takes place via catalytic interaction involving a "rotational" ("vortical") mode and

two inertial-gravity modes. As in Bartello (1995), an interaction is "catalytic" in that it does not influence

slow modes, but serves to transfer fast AG energy downscale.

The bilinear form I3(w, w) in Eqs. (3.3) can be conveniently represented in the cyclic basis (2.9). Now

we write the resonant (limit) equation for w -- w°qo + wlql -t- w2q2 where w ° is simply projection of w

on QG mode. Then w ° can be defined from the quasi-geostrophic equation; w _ = (w 1, w 2) is found from

inertio-gravity wave limit equation. The quasi-geostrophic equation is given by

cOtw° = Bl(w °, w °) .... Bl(w °, w°).. = -i E ¢¢k.._wkw._,,_ooo0 0 wkm.,_°°°= Nczmlrh[ _' A rh' (3.7)

and in the case nl = n. = 0

Bl(w°,w°),. -i E .,_ooo o 0= _¢k,_,_u, kw,, = 0 (3.8)
k Tm=n

since _000 = 0 by (2.29). From (2.29), we also prove that p and the horizontal averages of velocities do not"q5 kraft

0 0 This is not true for the operator splitting in theenter the QG equation (3.7); that there are no w; or Win.

limit f = 0, Fh << 1, Bu >> 1.

We introduce variables (_, U (quasi-geostrophic potential and velocity, not to be confused with the cyclic

basis vectors q0.., ql,_ and q2..):

qm = w._,l,_lw°,., 0_, = NK-k_/a=, kl, 0, O]Oh./_lkl _. (3.9)
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Thequasi-geostrophicstream function is definedby ek = qkN/_Z IY_l2. Recallingthat w_ I_I=/N= Iklv2+#2ka,'2

# = f/N we find a familiar formula which relates g; and q in physical space

0 2 _

-(v_+,2 )¢=4. (3.1o)

Using (3.9), Eq. (3.7) is written in the form:

Ot_,_ = -i E (Ok" rn)q,_. (3.11)
k q-rnmn

q(t, x) obeys in physical space the 3D quasi-geostrophic equations (Bourgeois and Beale, 1994)

i)
_q = 0 (3.12)

where 1) is the advective derivative, based on the quasi-geostrophic velocity and _ is the quasi-geostrophic5-;

potential.

Now we describe adiabatic invariants associated with horizontal averaging. Let us denote fi as (0, 0, n3).

0
We note that in the case nl = n2 = 0 we have q0n = [0, 0, 0, 1] and, therefore, wn = p_. Now the fact that

Qili2o 0 implies 0k,_ = Npn = 0. Then horizontal averages of p are conserved by the reduced equations. We

outline the proof of this important new result, that is o57P_ = 0. First notice that "_kmn_O°O= 0 from (2.23).

Also, Qll0km5= "°Skrn_g)220__ Q_.10k,_= 0. Then p_, the n-tll Fourier coefficient of fi(t, x3) satisfies:

0
_p_= _ ,_120_%_ _ _ ._k._nt k .,,- wkw._), (3.13)

the right hand side is null on 2-wave interactions ek = ¢,_. with n _ -- 0. Clearly, in (3.13) no 3 wave

resonances are omitted. This result holds for all resonances. The proof is very closely related to the one for

exact QG splitting (see discussion before Eq. (3.4)) but does not follow immediately fl'om Ertel's theorem.

This exact conservation law of the reduced equations correspond to adiabatic invariant of the full Boussinesq

equations. In particular, it shows that in the asymptotic state (after several periods of oscillations associated

with wave motions) horizontally averaged buoyancy variable will reach a constant in time value. It confirms

that horizontal spatial averages of buoyancy variable p(x3) are time independent in the asymptotic state;

this is frequently done in many investigations addressing the impact of vertical variability of buoyancy on the

dynamics (e.g. Howard, 1972; McWilliams and Weiss, 1996; Doering and Constantin, 1996). Below we find

the impact of buoyancy phases associated with vertical shearing of this invariant on ageostrophic dynamics

in non-hydrostatic situation. Similarly, we prove that 01, U 2 undergo rigid f_-rotation in the Bu = O(1)

limit (this result is true for all resonances including 3 wave resonances) and they are true adiabatic invariants

only if f] = 0.
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, 0 Therefore, taking intoTile limit equations for w n = [w_, w 2] include w,_l, tO m2 and ah'eady found w k.

account k, m-symmetry, we always label w ° variable by k; therefore to write the resonant equations it suffices

to consider (_°_n , Q°lm2, Q°_n , Q0_,_ (recall that all 1-wave and 3-wave interactions are non-resonant, cf.

"ili2ia
Section 6). The resonant relations reduce to w_ = w,,,n = k + m for the "symmetrized" Qk_ defined

in (2.31). The original Boussinesq equations for v' = IIAav can be written in the form

OtVln = -iexp(wntJ) E

Here the matrix Qkm,_ is defined by

vkO"Qkmn exp (--COrn _ J) vtm -_ --nI]AG_+ (Nt, V)n'_ " (3.14)

( /_)011 /2)021 )

Qkm_ = "_k._n "_km_ (3.15)
,4o12 _o_2 '
VCkmn Vgkmn

011 etc. are given above in (2.31)-(2.32), J is given by (2.18); Q+ (Nt, V)n are non-resonant terms. Taking

into account (2.19), we see that resonant interactions are generated by squares of sines and cosines and are

__t_012 t_1021 )

",oCkn_n"_-',,:_krnn

011 ...t_g=}022
kmn " "_kmn

(3.16)

given by the matrix 0 = (q - JOJ)/2, namely:

tSoM A022
Qkmn -'_ "% kmn -[- "_ kmn _

__A021 A012

Computing explicitly resonant terms in (3.14) we obtain reduced resonant equations for the lilnit w, with

N¢._¢n _ , __ - ,co,, "3Pk Jwm i E w°(t) Qkm_w'_"
wm _ Wn _m _ _n

(3.17)

' (wn, w;_)Wn ____ 1 "_

!

Otw n = i

We recall that. the resonance condition w,_ = co_, is equivalent to the condition Im'l VVI (or ¢m = ¢,.) andI_.1 -[')t

T_F =7N_I-_I In_l (or I_m] = I_1, see (2.10)). In Eqs. (3.17) w°(t) is an arbitrary solution of quasi-geostrophic

equation with initial data projected on QG fields and (_k,,_ are geometric coefficients given above.

In Eqs. (3.17) _ka/Sk represents phase correction impact of vertical shearing of/Sk on ageostrophie

dynamics. Clearly, ( 0 -_..._p)_ = ikap_. This phase correction implicit in (3.17) is equivalent to the spectral

Doppler phase shift. It can be calculated explicitly as a solution of the linear problem:

' _ N¢" ¢" a'afa, ,Otw n = i Jw,_ (3.18)
con

In particular, in (3.18) for all a2, a3 the condition 0-_ = ¢, is equivalent to ma = -n3, m' = n' (for m = n,

fik = 0). It implies that k3 = 2n3, ¢,,¢n = ¢]_ in (3.18). With the above remark on the convolution in
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(3.18),Eq.(3.18)reducesto thesystemcoupling(n',n3) and (n',-n3):

, N¢ 2 ,
0tw(,_,,±,3 ) = ±i2_3fi(0, 0,-t-2na)--_Jw(n, _:n3) (3.19)

whose fundamental solution involves cos(0_t) and sin(0nt) with the spectral phase 0,_:

= 4  lf(O, o, 2, 3)I2(NeZ) . (3.20)
COn

Then in this particular case solutions of (3.17) have the integrating phase factor

N _• ¢;_ _
e×p(+,--2n3 Ip(o,o,2. )l¢). (3.21)

COn

Here 2n3P(0,0,2n3) is vertical shearing of horizontal spatial average of p which is an adiabatic invariant (time

independent) in the asymptotic limit.

The term containing vertical shearing of Pk in (3.17) is associated with the coefficient d) °J2 given
"V krnn

by (2.32). It involves the vertical shearing operator O/Ox3 (multiplication by_ k3 in Fourier space). In

this respect Eqs. (3.17) should be useful in detailed investigations of vertical mixing in times of high shear.

Doppler effects such as shifting the frequency of an internal wave can be measured experimentally through

Eqs. (3.21). We have shown the existence of a statistical dephasing effect, induced by turbulent processes on

inertial-gravity waves. Turbulence acts to renormalize both frequency and viscosity of waves (Legras, 1980;

Carnevale and Martin, 1982). Legras (1980) has investigated turbulent phase shifts of Rossby waves coupled

with QG turbulence. Using EDQNM theory and numerical simulations he showed that in the turbulent

domain turbulent frequency shifts can be as large as 30 % of the wave frequency given by linear theory. We

effectively generalize this work to the most general interactions of inertio-gravity waves with 3DQG turbu-

lence. In BMN (1996a) we presented formulas for fi'equency shifts induced by turbulence on inertial waves in

the context of 3D rotating Euler equations. The turbulent shifts for rotating shallow-water equations with

the/3 term were analyzed in BMN (1996 c, e).

The equations (3.17) for WAG' are also invariant under vertical averaging, k3 = m3 = n3 = 0; this follows

from the equivalent condition tbr two wave resonances, wm = w_ implies [m3J/[rnl = Ina]/[n[. Denote by

WAO the vertical average of WAa. Careful inspection of the coeffÉcients Q_*_'_ in (3.16) shows that they all

reduce to zero, except, for:

(f_Oll (_022 k! A _t= = --= (3.22)

Moreover the Craya-Herring basis reduces to q0_ = P0_, qln = (0, 0, -1, 0), q2n = (0, 0, 0, 1). Hence WAG

reduces to the vertical averages of vertical velocity and buoyancy variables. Vertical averaging is usually

denoted as the barotropic component (Bartello, 1995). The above establishes that, these quantities are
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purelypassivelyadvectedbythe2D-2C vertically averaged quasigeostrophic velocities. The linkage with the

dynamical Taylor-Proudman theorem at Bu = 0 is remarkable, as u3 and _ are indeed passively adveeted

by the 2D-2C vertically averaged Euler fields in that context too. It confirms that barotropic components

_3 and _ of the field take no part in the geostrophic adjustment process.

Further, for almost all Bu and domain aspect ratios a2, B2(WQG, WAG) in (3.17) splits in Fourier space

into uncoupled, restricted interaction operators on 4 rays families

ml 00/nlm2 = _ 0 4-1 0 n_ , (3.23)

/t't 3 0 0 =t=l _3

for n3 _ 0. This is obtained by further reducing resonances (.dm : _d,. In Eqs. (3.17) together with

the condition (3.23) direct cascades of energy are allowed for WAG through B2(wQG, WAG). Wave energy

cascades toward smaller scales and is subject to strong dissipation in AG mode. Vertical shearing operations

in B2(WQG,WAG) are conveniently expressed in terms of divergent velocity potential X- We recall that

X and ¢ are related to Uh by the formula Uh = e3 × Vh¢ + _ThX. The form B2(WQG, WAG) takes an

especially simple form in the Craya-Herring cyclic basis. In this basis the first component of WAG is simply

(_At-1 0U_,(;
the divergent velocity potential X = _ _Jh ax_ or in Fourier space

._,3 1 1

X,_ : -_]_ ]-y]w,_ (3.24)

where h/ = (?_.1, _72/a2), and the components of the full field in the Craya-Herring basis are (w o, Wnl, Wn2).

Here w,0 is the component of the quasi-geostrophic mode and w¢_, w_" are the ageostrophic components.

The coefficients "qSkm.n/Z)011---- "_krnn,/_011"_m_,rS01:"_k,-_rS°21in (3.15)-(3.16) explicitly yield terms X;,_ = -_i_l,_'l'm_--1'w1"_'

X',_ = -i_ W[1w,] which reflect vertical shearing dynamics, and contribute to imbalance dynamics. These

terms come from r)oll r)o12 r)o_,l r)-_Ol Q101 given by Eqs. (2.25)-(2.27) and are carried over to the"_¢krnn_ "_krnn, _kmn' "_drnkn, mkn

Q0_ D01__ /)0.,_ in Eqs. (2.31) and in Eqs. (3.15)-(3.16). The important role of the divergent velocity

potential _ in the AG reduced Eqs. (3.17) can be compared with that in the classical balanced models (Gent

and McWilliams, 1983a, b). There a classical expansion in small parameters is carried. In some sense, our

QG÷AG Eqs. (3.17) describe near balanced and some unbalanced regimes.

Wave energy cascades towards smaller scales along rays in Fourier space and is subject to strong dissipa-

tion in the ageostrophic mode. We have an upscale energy cascade via (0, 0, 0) triads corresponding to 3DQG,

downscale cascade of energy via (0, i2, i3), i2 _ 0, i3 ¢ 0 triads corresponding to catalytic interactions. Tri-

ads (0, i,., i3), i2 ¢ 0, i3 ¢ 0 flush the gravity wave energy downscale in a nonlinear geostrophic adjustment

process. When simulations are initially balanced, gravity modes act to damp large scale rotational modes

via transfer into intermediate scale gravity modes, and via. a subsequent downscale wave cascade involving
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the catalytic interaction. Effective eddy viscosity on fast modes is larger than that on slow modes confirming

Bartello et al. (1996). Spectral eddy viscosities for QG and AG fields with explicit dependence on the rota-

tion/stratification parameters are calculated. They correspond to 2-wave resonances on the linear diffusion

operator. Let ul and u2 be the kinematic viscosity and the heat conductivity, respectively; the ratio tq/u2

is known as the Prandtl number. Then effective spectral eddy viscosities u</_ and IIAG are given by

I_'12 I_'12
_'Q_(,_)= _'_+ (_'_- _'2)i,_,1_+ _, "AG('_)= _'_+ (_'_-- "_)i,_,12+ _2_ (3.25)

where p = f/N. Let's consider the case of a large Prandtl number b'l//] 2 >> 1. Then Eqs. (3.25) can be

approximated by the following expressions

i_,l= _2_ (3.26)
_q_,,(n)= -1 [_,1_ + _, _(,_) = _1i_,12+ ._,_.

Eqs. (3.26) clearly show that QG and AG modes are effected by viscosity differently. For example, UAa(n)

increases if vertical shearing increases (large n3) while uQc(n) decreases. The dependence of effective eddy

viscosities on p = f/N is also of interest. In the stratification dominated regime (p --+ 0) we have uQ_(n) --+

t/l, PAG(n) --+ O. The fact that t/aG(n ) _ 0 is reflected in lack of control of AG dynamics (vertical shearing) in

the strongly stratified limit. The situation changes dramatically in the rotation dominated regime # -+ +c_.

In this situation we have IJAG(n ) ---> Ul, PQG(n) -+ O. The fact that uaG.(n) approaches a nonzero finite value

allows us to control AG dynamics in this limit. Remarkably, uQG(n) -+ 0 does not spoil the situation since

QG dynamics is globally controlled even for zero viscosity (Bourgeois and Beale, 1994). In the physical case

Pr = ul/u2 ¢ 1 and naively adding the usual viscosity to 3DQG equations is incorrect in the geophysical

limit.

As noticed by M_tais and Herring (1987) and M_tais et al. (1996), the presence of stratification yields

the formation of very strong vertical variability which tends to destroy the vortices vertical coherence. In

stably stratified, rotating flows, quasi-two-dimensional organized vortices structures are only observed in the

presence of a well-defined horizontal density (temperature) front leading to baroclinic instability.

The impact of even small viscosity onto ageostrophic dynamics in (3.17) is strikingly different from that

on the quasi-geostrophic equations (3.12) confirming the predictions of M_tais and Herring (1989). In (3.12)

modified with uQG dissipative small scales interact nonlinearly with an anisotropic inertial range with inverse

cascades and intermittencies in the quasi-geostrophic turbulence. Inviscid ageostrophic dynamics are driven

by the chaotic quasi-geostrophic field, albeit on restricted rays in the Fourier wavenumber space (but no

restriction to the direct energy cascade). Energy is conserved separately on each family, but not e_strophy.

Direct cascade of energy is enhanced along each ray family, in contrast to the inverse cascade for the QG

component spectrum. This is confirmed by numerical observations of M_tais et al. (1996).
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4 Intermediate asymptotic regime of strong stratification and weak

rotation

In this section only k2/a2 will be denoted by k2 and k3/a3 by k3, [k12 = kl+k2/a2+k3/a3,2 _2 2 o2 2 ik,[2 = k_+k_/a_.

Intermediate asymptotic regime of strong stratification and weak rotation is conveniently characterized in the

Craya-Herring cyclic basis using expansions in a small parameter # = f/N = fo/No. Equations describing

balanced dynamics with control of vertical shearing are obtained by expanding _000 Nw,,,[m[

in Eqs. (2.24) in powers of #. We have

2

_klkl-- N2WI2÷f2k_-=N Ik'[2+_ kS-- ÷_, +O(/)), (4.1)

N 1 _(1- k_
_klkl- _/Ik'l_+_k_ Ik'l _m +O(# 4) (4.2)

with similar expressions for w,_]ml and w_ln[. Here O(p 4) denote terms in Taylor series of order #4 and

k_ 2
higher. Expansions (4.1) are valid provided that ip_p << 1. We note that l, = 1/Ik3] and lh = 1/[k'l are

the vertical and horizontal spectral length scales, respectively. Then the condition ik,l_ p << ] is equivalent
22 22

to the condition Bu_ = N6lv/f_l h >> 1. Here Bu_ is the spectral Burger number.

Substituting expansions (4.1) in the expression for Q000k,,_ we obtain after cancelling N 2 and suppressing

terms of order p4 and higher

000 (k' An') [1 + _#_(
m3 2 k_

_'_"(_)- Ik'lln'l I"'1_ Ik'l_ I_'1_)] +°(/) (4.3)

Clearly,

Q°°° _o_ I'_.'l
_m._ J--ik, ll,,l (k' A n'). (4.4)

The appearance of the operator k_/[k']" etc. in Eqs. (4.3) is not surprising since it is related to the inversion

of (3.10). Indeed, for small # we have

O_ ,--2 02 ,

= -(V h ÷ #2_-_x_)-1 _ = --Vh2(] -- ]t'V h _-_x_) ÷ 0(# 4) (4.5)

_ X-/- 2 0 z
where the operator --h o_ is -k_/Ik'l" in Fourier space.

Eqs. (4.3) show that the regularizing effect of rotation involves the inverses of horizontal Laplacian.

The effect of these operators on the dynamics is to decrease the horizontal scale. This is in fact what. is

observed in numerical simulations investigating the effects of rotation on turbulence (McWilliams, private

communication).
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Eqs.(3.7)nowtaketheform

Otw ° -i E ooo o o= Qk,_(p)wkw,_ (4.6)
k-l-m=n

where 000Qkm_(#) is given by Eqs. (4.3). For every p ¢ 0 the coefficients 000Qk,_(P) have explicit dependence

on vertical variability parameters (kn, m3, n3 in Fourier space). For # = 0 dependence on vertical variable

disappears and we obtain complete decoupling of dynamics at every vertical layer with the vertical coordinate

x3 appearing only as a parameter. At any given vertical level the dynamics is described by 2D Euler

equations with different pressures at every vertical level. There is no control of vertical shearing which can

grow exponentially. We obtain quasi-2D unbalanced dynamics of vertically stacked pancakes which was first

described by Lilly (1983). For # ¢ 0, as shown below, Eqs. (4.3), (4.6) have a conservation law which allows

to control vertical shearing for all times. Our results reveal the regularizing effect of weak rotation which

introduces vertical coherence; the mechanism of the regularization is through coupling of dynamics in the

vertical direction. This regularization differs from regularizations based on vertical viscosity.

We note that the coefficients 000Qk,_ (#) have the following important skew-symmetric property

000 000
Qkmn(t t) = -Q,,_k (/*)- (4.7)

Eqs. (4.6) have a conservation law which simply expresses the fact that potential vorticity is conserved if

written in _ variables. Multiplying (4.6) by won and summing over n we obtain

& _ Iw°(t)l2 = 0 (4.8)

since

-i E ,-_ooo , , o o ,o(_kmn([A)WkWm U-'n. -i E ooo o o o= Qkmn(p)wkw,,_.w_ = 0. (4.9)
k +m=n k+m-i-n=O

In (4.9) we used the fact that 000QA:,,_(#) is anti-symmetric (Eqs. (4.7)) and - o. 0 ._0 is symmetric under

interchange of k and n. The conservation law for w°(t) implies conservation of energy for the projection of

the field on

9
n3

qon(P) = (1 21712#n5 2,)pon +/*f_7_P2,_ + O(#a)" (4.10)

Then using the conservation law (4.8) and following Bourgeois and Beale (1994) one can prove global existence

of solutions of Eqs. (4.3), (4.6) with full control of vertical shearing for all times.

The coefficients Qi_i2ia[. sam,_ _ff) given by Eqs. (2.25)-(2.28) can be expanded in powers of p (see Appendix).

Then we obtain

QOOO ooo 1 _, Im'l (k' ._ k_ ._
k,,.,,(p)= + An') ( i_ ) -k O(ft4), (4.11)Q_m,,(O) -_#_ I_"lln'l' Ira' I,el_ I,'1_
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t2
"011 ^011 1 2 k_(k'/Xm')(_*_mS'm'+lm'l_[n'12+_m3k"_"-n3k31*_l )

Qk,,._(_) = Qkm_(0)- _ Ik'Pl_'lln'll-q Inl

Q022 ,_022 1 2 k' A m'. k_ m_ n_
k._,_(#) = ,_k.._(o) - _ I--F_T--I (l_-Tp-j2+ _ + in, i 2, +

_2 (kt A mt)(m3.3?Ttt • 7_,t -]- m3k31n'l 2 - m3nan', k') + O(p4),
I_'ll"'lln'll_'lln'l

, (4.12)

(4.13)

"012Qkm_(_) = -2_
,-3,,3(k' Am')2+ (,,,sk'. m' - kalm'12)(nS, k' - ksl,.'l2)

I_'ll'.'ll"ll"'lln'l + o(_3), (4.14)

where

_021 m3n3(k' A m') 2

Qk.._(#) = 4# I,_11_'11_'11-_'11,*'1+ °(_)

ooo _ IWl _ ktAml f)021

, _¢kmnQk'_n(O) Ik'l Q_m..(O)-- (o) = o,Q_mn(0) ik,ll_,l(k'A,*'), "022 _o,2

(4.15)

(4.16)

_Oll (k' Am')(,_mJ.W+l.,'121_'12+_m3k'-,.. ' - _k_lWl 2)
Qkmn(O) =

Ik'llm'll_'ll-_ll_l

Our regularized system for w, (w °, u,_), w,, = (w,1 , 'w_) follows from Eqs. (3.7), (3.16)-(3.17)

form

OtWn 0 : --i E [')000 0 0,_k.,,_(#)wkw,.+ 0(#4),
kTm=n

(4.17)

It has the

(4.18)

where

' E 'Otw.. = i N¢.,¢,_ k3fik Jwm - i
_d n

¢_, = 4'. ¢,m = 4_n

k + m = n k + m = n

(_k._n(#) = ( Dk.,_(#), Gk.._(/t) )

E w°(t) (_k ......(ff)w'._ + O(p4). (4.19)

(lO) (o,)= Dk._(#) + G,_,,.,(p) , (4.20)
0 1 -1 0

Dk.m(#) _0]:1 _0 "9 ,' ,= Ok..,,(P) + Qku_ttt), Gk,_,_(p) _o12 _o21= -Qkm,_(#) + Qk.._(P) (4.21)

with components of the matrix Qmn,, (#) given by formulas above. For every fixed value of the parameter p

vertical shearing is controlled in the reduced equations (4.18)-(4.20) for all times. The system of equations

(4.18)-(4.20) will be called the regularized Boussillesq system in the regime of strong stratification and weak
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rotation.It allowsusto studytheregularizingeffectof weakrotationonquasi-2Ddynamicsofdecoupled
pancakesandits impactonAGdynamics.For# = 0 we obtain

Gkmn(O) ^021 ^012= Qk.._ (0) _o2_- Qkm_(O) O, Dk._(O) t5oll_k._(o) += = Qkm,_(0) (4.22)

where t5011 _022 1 and 2 projections of the_k,_(0) and _km_(0) are given in (4.16)-(4.17). We recall that w_ w_ are

total field on the divergent velocity potential (X) and the geostrophic departure mode, respectively. The

1 and 2matrix (_k_(0) is diagonal and equations (4.19) for w_ w_ are coupled for p = 0 only through the

phase term i_k3fik Jw_ which is associated with vertical shearing of horizontally averaged buoyancy

1 and 2variable (adiabatic invariant). For # ¢ 0 the modes w,_ w. are coupled as can be seen from Eqs. (4.20).

Non-diagonal terms are proportional to Gkm,_(p); Taylor series expansion of Gk,_(ft) starts with terms of

order ft.

In order to obtain a simple reduced system suitable for practical numerical implementation, terms of

order ft in Eqs. (4.19) are neglected. Then two scalar equations for w I and w2qn (4.19) are coupled only

through the phase term and can be solved in parallel.

A simplified reduced system consists of three prognostic equations:

W 0Ot n = --i E ooo o oOk._(#)wkw._, (4.23)
k+m=n

Otw n = i Jw._ - i w_(t) Dk._(0)w._. (4.24)

(_Tr, = 4'n 4_,n = 4_n

The scalar coefficient Dk,,_ (0) in (4.24) is given by

Dk_,_ (0) "oll t_022 [0 ] 2= Qkmn(O) + W,kmnt J =
k' A_' nnmJ-,_' + Im'l_-I./I_

Ik'l I-_'ll.,'ll_llnl (4.25)

k'^,_' in (4.25) represents advectionIn the derivation of (4.25) we used the relation ¢,_ = ¢,. The first term -W[-

in physical space. Now we analyze the role of the second 0-order term

7(n,m) = n3man', rn' + I_,_'1_1,_'1_ = I.'/X,.'l _+ (n. _)(.'. W) (4.26)
I,_'ll,dlmlM I-_'II..'II-_[M

The coefficient. 7(n, m) can be easily computed for 4 ray families. For example, we obtain from (4.26)

7(n, rn) = 1 if ml = _nl, rn,2 -- An2, m3 = An3; (4.27)

7(n,m) = m12+ m_- m2 if rnl = /_/'tl, ?'D, 2 : ,_'D,2, 17"l 3 = --/_'D. 3 . (4.28)
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Theappearanceofawavetypeoperator i,q_ ill Eqs.(4.24)isdueto polarizationinducedbywaves;
it correspondsto wavedynamicsonthereducedfamilyof4 rays.

Theadvantageof prognosticequations(4.23)-(4.24)overthediagnosticverticalvelocity(omega)equa-
tion(1.17)is inimprovedaccuracy.NearbalanceandsomeunbalancedregimescanbetreatedbyEqs.(4.23)-

(4.24).Theseregimescannotbetreatedby thediagnosticequation(1.17)wherefilteredinitial datais

requiredinorderfor (1.17)to beareasonableapproximationof (1.16).

For# = 0 Eqs. (4.18) coincide with the familiar quasi-2D Euler system which can be seen by introducing

variables _ and UQ2D (quasi2D potential and velocity):

qm = l?Tltlw Om, UQ2D,k "_ [--_2,&l,0,0]qk/I]¢/I 2. (4.29)

In this notation (3.7) is written in the form of 2D Euler equation which depends on x3 as on a parameter:

Ot_., = -i E (Uq2n,k" rn)c_._. (4.30)
k-bm=n

Then the velocity UQ2D (t, X l, X2, X3) satisfies quasi-2D Euler system

OtUQ2D -_- (UQ2D -{- UQ2D) " VIUQ2D = -VIf), V I • UQ2D --_ 0 (4.31)

m

which depend on x3 as a parameter, V' = [01,02]. In Eqs. (4.31) UQ2 D denotes horizontally averaged

velocity which is an adiabatic invariant of 3D Boussinesq equations in the strongly stratified limit (in the

absence of rotation).

5 Phenomenological analysis at asymptotic limit of strong rota-

tion/stratification in the Burger number of order one situation

At asymptotic limit of strong rotation/stratification, the existence of two disparate time scales indicates a

phenomenological analysis similar to that of rotation (Zhou, 1995; Mahalov and Zhou, 1996) may be appro-

priate. The aim of this approach is to estimate the averaged effect of rotation/stratification on turbulent

energy transfer. The introduction of the anisotropic time scale based on the aspect ratio parameter in the en-

ergy spectrmn is an improvement over our previous phenomenological analysis of rotating turbulence. In the

context of the quasi-geostrophic equations for a Boussinesq fluid in a uniformly rotating and stably stratified

environment, McWilliams et al. (1994) showed that their solutions exhibit significant anisotropy associated

with the emergence of many long lived coherent vortices that control the flow evolution. Anisotropy of

quasi-geostrophic field impacts on the ageostrophic gravity wave field through Eqs. (3.17).
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Amongmoremundaneimmediateconsequences,exactoperatorsplittingof thereducedequations(3.3)

reachtheveryrootsofthemechanismsof wave-vortexinteractions.Letusdesignateby ( } theensemble
averagingfor anyfieldUt, andbyUiF= Ut - (U?)thefluctuations.ThentheReynoldsstressoperator
becomes:

(WQG,F, WQG,F> -_ (WAG,F, WAG,F} -_- 2(WQG,F, WAG,F}. (5.1)

The last tensor we shall designate as the anisotropic phase coherence tensor. It correlates the fluctuations of

the ageostrophic WAG-field with the quasi-geostrophic WQG-field. The anisotropic phase coherence tensor

is the key player in the control of rapid 3-D pressure fluctuations. The dependence of the full Reynolds stress

tensor on the intrinsic mean vorticity does not vanish in the limit of strongly rotating/stratified turbulence,

as neither the field WAG, nor the "anisotropic phase coherence tensor" vanish. Long-lived phase coherence

is an important part of turbulence (Bartello and Holloway, 1991; Herring and McWilliams, 1985).

In order to infer the form of the inertial-range spectrum, it is necessary t_ estimate the magnitude for

the triple correlations. In general, 73, the time scale for decay of triple correlations which is responsible for

inducing turbulent spectral transfer, may depend on any relevant turbulence parameters. Because energy is

conserved by the nonlinear interaction and a local cascade has been assumed, e is independent of k. Local

cascade also implies that c is explicitly proportional to T3 and depends on the wavenumber and on the power

of the omni-directional energy spectrum. A simple dimensional analysis leads to

e = d2r3(k)k4E2(k) (5.2)

where A is a constant. We recall that w_ = N 2 + f_ _. As in Section 4, we defined the vertical and

the horizontal spectral scales as l_ -- K_'l lh = 1-_" If r/= l,/lh = ]k'l/Ik31 is the ratio of these length scales
/ _r2 _l2 2 1

then wk -- V_0 _ + f0,_+l-

In the strongly rotating/stratified case when both effects are of the same order (Burger number of order

one situation), the time scale for Ta(k), the decorrelation of the triple velocity product, is the controlling

parameter to influence the energy transfer process. In a regime of high Reynolds numbers and low Rossby

and Froude numbers, turbulence is characterized by two disparate time-scales: a short anisotropic time scale

1 /N_? 'l_ 2 1
associated with the rotation/stratification frequency TaN = /V u v2+] + f0 _ (f0 = 2_0 is the Coriolis

parameter) and a nonlinear time scale. We find that a direct application of 73 = TaN resulted the energy

spectrum for turbulence subject to strong rotation/stratification:

J_(]g) = _12N_f' [T'--lfIN e) 1/2]_;-2" (5.3)

We now consider the number of the non-dimensional parameters needed. For the turbulence in equilibrium

the Rossby/Froude numbers are the only relevant, parameter controlling the effects of rotation/stratification
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ontheflow.However,forthenon-equilibriumsituation,anewnon-dimensionalparametersuchas(r_ t) is

required. Here the dimensionality is considered by introducing the aspect ratio. Our analysis suggests that

the energy transfer process in the limit of (v_ t) --+ cxDand small spectral Rossby/Froude number (strong

rotation/stratification) is as follows. There is inverse energy transfer by 3D QG component (McWilliams,

Weiss and Yavneh, 1994). In the meantime, there is also a direct energy cascade governed by the equation

for the inertio-gravity wave component. The energy spectrum of the full field U t is given by E(k) =

-:.

Following the usual assumption of EDQNM, we consider that the lifetime of triple correlations in rotat-

ing/stratified turbulence might be more accurately treated by taking into account the possibility that these

correlations decay because of the influence of both wave propagation and nonlinear interactions. The simple

choice

1 1 1
- + -- (5.4)

r3(k) r N(k)

satisfies the appropriate limiting cases: r3(k) --+ r,,_ without rotation/stratification and r3(k) --+ raN with

strong rotation/stratification. The introduction of the anisotropic time scale based on the aspect ratio pa-

rameter in the energy spectrum is an improvement over our previous phenomenological analysis (Zhou, 1995;

Mahalov and Zhou, 1996) since now the model can distinguish the anisotropic nature of rotating/stratified

flows. The generalized inertial range energy spectrum is

where Z is given by

E(k) = Z2A-4/3(2/3k -5/3, (5.5)

(>6)

Y = + + (7-) + - + . (5.7)

-3/2 -1/'_The parameters A = C;- a/4, /CaN = raN e " and Z0 = A21ar_,(e/C2) -Ila = [_]2/a. The strong

rotation/stratification limit then leads to CaN = 1/A = 1.22 - 1.87 for the typical range of Kolmogorov

constant. These equations reduce to the classical Kohnogorov "-5/3" spectrum when Z0 --+ 0 (so that Z --+ 1),

and to our rotation/stratification modified "-2" spectrum when Z0 >> 1 (so that Y --+ 0, Z -+ Z_/4). For

intermediate rotation/stratification rates the spectrum varies smoothly between these two limiting forms,

according to the increase of the controlling parameter Z0 with increasing ratio /CaN//C. This confirms the

numerical simulations of rotating stratified turbulence by M&ais et al. (1996). In their numerical simulations
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thegeostrophicenergyspectrumwassteeperthank -3 at the small scales, whereas the ageostrophic energy

spectrum was much shallower. As a result, the large scales are dominated by geostrophic energy, while the

reverse is true of the small scales. There is a spectral gap between QG and AG spectrum with AG spectrum

being shallower than the typical k -3 QG spectrum; it varies smoothly between k -2 and k -5/3 which is in

agreement with numerical simulations of M_tais et al. (1996), Bartello et al. (1996).

The equation which determines the spectral eddy viscosity, vT(k), is given by

= .T(k)S2(k) : .r(k)E(k)k 3 (5.S)

Therefore, the rotation/stratification dependent eddy viscosity can be estimated as

-T(k) = .o[_] 1/_
1

1 + y-l/2' (5.9)

where vo is a constant and y -- k3E(k)/N 2. The inertial range wavenumber k can be related to the turbulent

kinetic energy I£ and dissipation rate

k = E(k----A(3C_/2)3/2.
[£3/2

For the inertial range spectrum, Eq. (5.9) can be rewritten in physical space:

,K 2 1
_(_) = _o 1+ 0.36I£/(TaN_)' (5.10)

The eddy viscosity above is only appropriate for homogeneous turbulence without mean velocity gradients.

The spectral time scale is an important measurement. The Kolmogorov hypothesis implies that. the

energy-containing range excitation does not affect energy transfer within the inertial range. Therefore, the

average rate of energy dissipation is identified with the rate of spectral energy transfer and the rate of energy

input. The nonlinear (or eddy turnover) time-scale, T_t (k) _= [k3E(k)] -1/2, is then equivalent to the spectral

transfer time, r_. Zhou (1995) has shown that

1 b.(k)]:
r_(k)- A2 raN(k) ' (5.11)

v_(k) - A_ T3(k)"

or more generally,

Therefore, the time for the spectral energy transfer is increased to a, value greater than rnz; thus the nonlinear

energy transfer is suppressed by rotation/stratification.
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6 The devil's staircase of convergence results

In this section we give a short presentation of new regularity and strong convergence results for rotating

Boussinesq equations in the Bu = O(1) regime; these are substantial improvements over the corresponding

ones in BMN (1996b) in that much less regularity is required for the initial data, with the Sobolev space

H9 being the worst and H4 being the best case. Here Ha designates the space of functions with square

integrable derivatives up to order a. Any strong convergence result uniform in the parameters Roa or

1/N cannot circumvent control of small divisors and sharp estimates of both near 3- wave and near 2-

wave resonances. The o(1) non-uniform convergence results in H3 of Embid and Majda (1996) cannot be

extended to O(1/N) uniform error without control of such near-resonances. Here we investigate the density

and probability of both 3-wave and 2-wave resonances as function of the three geometric parameters:

Bu = N2a_/f 2, 02 = 1/a_, 03 = 1/a_. (6.1)

For rare, non-generic values of these parameters, the limit equations for_he ageostrophic field WAG can be

nonlinear:

OtWAG' = B2(wQa(t), WAG) + B3(WAG, WAG); (6.2)

the bilinear form B3 can easily be computed in the Craya-Herring cyclic basis and is not detailed in this

section for conciseness sake. In B3, the domain of summation K*, (k,m) C K*, k + m = n, depends on

(Bu, 1/a_, 1/a_) = (Bu, 02, 03); that is IC* = I_*(Bu, 02,03). For every fixed 02 = 1/a_ and 03 = 1/a L

the summation set K*(Bu, 02, 03) is not empty when Bu E O_(02,03); the set ®_ is very thin, namely

it is countable. We call it a strict 3-wave resonant set. In Corollaries 6.1 and 6.2 we give an estimate of

the very small probabilistic measure of near 3-wave resonances. We mostly study the typical case when

3-wave interactions are absent, that is Bu _[ @_(02,03) and B3(WAa,WAG) is identically zero. When

Bu C 0_(02,03) is strictly resonant, B3 is non-zero and strongly depends on Bu; the sets If*(Bu, 02, 03)

with different Bu do not intersect (highly nontrivial result from our study of the small divisor problem).

-* (02,03) isThis implies that the operator B3 depends on resonant Bu discontinuously, every point Bu E 0 B

a point of discontinuity of the operator B3. Since B3 is not zero, solutions of the limit system with general

initial data discontinuously depend on Bu as well. As solutions of the original rotating Euler-Boussinesq

equations depend on Bu continuously (on a small time interval [0, T_]), the conve,yence to solutions of the

limit equations cannot be uniform in Bu, a2, a3. This paradox we call the "Devil's staircase of convergence

results".

For Bu _ O'B, Eqs. (6.2) reduces to the linear equations for catalytic interactions (3.16)-(3.17). At the

same time, the equation strongly depends on 02 = 1/a_, since the 2-waxe resonance condition wm= w_
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is equivalentto [rh'l/lm3 [ = [fi'/ln3l. For every irrational 02, B2 splits in Fom'ier space into uncoupled,

restricted interaction operators on 4 ray families as in (3.23). For every resonant rational point 02 E O_, B2

includes more interactions (much larger, but finite number of Fourier rays), so indeed rational 02 are also

points of discontinuity for B2 and further contribute to the Devil's staircase of convergence. An important

observation is that 2-wave resonances are controlled by 02 only, not by Bu or ca. This follows from the fact

that w_ = cos implies Im3l/l_i_'l = Inal/[_'l- In contrast, 3-wave resonances are controlled by Bu uniformly

in 02 and 0a; although strict resonant values Bu = O_(02,03) depend on 02 and 03, we prove that the

estimate of the measure of almost resonant Bu does not depend on 02 and is uniform in 03. The sensitive

dependence of convergence results on the parameters Bu and a2, a3 was missed by Embid and Majda. In

fact:

Lamina 6.1:

Let N 2 = f2 (that is Bu = a_). Then there exist no 3- wave resonances for 1/9 < aa2 _< 9.

The main convergence result of this section (Theorem 6.1) shows that the convergence is uniform and

the error is of order (1/#2 + 1/pa)/N when 05 C;/ @_, Bu _' O_(02,03), with the Lebesgue measure

meas(@_ _) <_ #3, rneas(@_ _) <_ #5 with P2, tt3 arbitrary small. ®_ and O_ _ are the sets of near resonant

3 waves and 2 waves. Here 11"I[_ designates the norm in the Sobolev space H_.

Theorem 6.1:

Let B,_ <_ Bu <_ BM, Bm< 1 < BM. Let 0 _< //1,122 _ 1 (including ul = _'2 = 0), Bu _ O F (02), 05 _ @_.

Let a > 3/2, _r - a > 7, M0, > 0, #2,#3 < 1. Let [[Ut(0)[lo _< M0_,. Let. Ut(t) be an exact solution of

the 3D Euler-Boussinesq equations. Let. WQc,(t) be the solution to the QG equations (3.7), (3.11), (3.12)

with initial data IIQaUt(0), and WAC,(t) the solution to the limit ageostrophic equations (3.17) on the 4

rays (3.23) with initial data IIACUt (0). Let E(t) be the inertio-gravity waves linear propagator. Then for

O<t<T1

liar(t) - wQa(t) - E(--t)WAG(t)II_ _<Ca5(1/_" -[- a_/#3)/N, for f < N,

< CRoaan(1/p2 + a23/#3), for f > N; (6.3)

where T1 depends on only on M0a; C depends only on M0_, c_, B M (for f < N) or Bm (for f > N).

Theorem 6.2:

For IIQaUt(t) - WQc.(t), under the same conditions as in Theorem 6.1, but with the weaker smoothness

(r - c_ > 5 we have the estimate, for both inviscid and viscous cases:

[]HQGut(t) -- WQG(t)[[o_ _ CRoaa3/P2, for f > N

< Ca_/(N#2), for f < N. (6.4)
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Thesameestimatesholdfor ]l_t(t) -WQG(t) - E(--t)WAa(t)]]_, but with ¢- a > 4. Here _t designates

the vertical averaging.

Remark 6.1:

For the full error, the above requires smoothness of initial data in Ho. For the convergence of the QG

compbnent, only H7. This is a substantial improvement over the H37 in BMN (1996a) and the H18 in BMN

(1996b). The convergence under the H6 smoothness for the vertically averaged fields is rather remarkable,

as it involves both the QG component and the AG component. It clearly shows that the Dynamical Taylor-

Proudman theorem established in BMN (1996 a, b) has a modified version for the Bu = O(1) case, coupling

QG and AG component.

In Theorem 6.1, the measures p2 and #3 are equal to the measures of the excluded sets of a_ and Bu;

the), reflect estimates of the measure of Mmost resonant a2 or Bu. In fact, such estimates imply the "Arnold

Tongues" of Figure 2:

Corollary 6.1:

Let N > f and 1/Bu, 02 = 1/a_ be tile resonance parameters, with 1/BM <_ 1/Bu <_ 1�Bin, and B,_ = O(1).

Then

p3(1/Bu, 02, 03) ", 4= Ca 3, (6.5)

where (_' is an absolute constant independent from 02, 03 and C, = O(1). The probabilistic (normalized)

measure of near 3-wave resonances in 1/Bu on tile interval [0, 1/B, d is CB,_a_, and the factor a43/p3 within

the error estimate in Theorem 6.1 reduces to C.

Corollary 6.2:

Let N < f and Bu, O_ = 1/a_ be tile resonance parameters, with 0 _< Bu <_ a3. Then

#a(Bu, 02,03) = Wr'*a3,3 (6.6)

where C* is an absolute constant independent from 0,, 03, C* = O(1). The probabilistic (normalized)

measure of near 3-wave resonances in Bu on the interval [0, a32] is C'a3'3, and the factor a3/pa within the

error estimate in Theorem 6.1 reduces to C*.

Remark 6.2:

For N > f, 1/Bu = (f/Na3) 2 is the naturM resonance parameter; Bu --+ +oo, N --+ +oo in the strongly

stratified limit. For N < f; Bu --+ 0 as f -+ +oc and Bu = (Na3/f)" is automatically smaller than a3.

Corollary 6.1 proves that tile probability (normalized measure) of near 3-wave resonances at Bu =

O(1) is very smM1 for the atmosphere on synoptic and mesoscMes; H _ 10 km, and even for borderline

smM1/mesoscMes L _ 50 kin, a3_ _ 4 x 10 -2. The 3-wave almost resonant sets for such domains are very

sparse, quantitatively confirming Bartello's (1995) picture.
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Usingapproximationsofsolutionsof3D rotating Euler-Boussinesq equations by solutions of the QG and

AG equations, we have proven global regularity of solutions of 3D Euler-Boussinesq equations with arbitrary

large initial data on arbitrary long time intervals. The global existence theorems in H3 for QG equations

obtained by Bourgeois and Beale, as well as the conservation of energy on the restricted uncoupled families

of 4 rays for WAG ensure global existence for WQG + WAG. Contrary to Bourgeois and Beale (1994), we

do not require any "prepared" initial data:

Theorem 6.3:

Let 1/Bu _ ®_(02,03), 02 _ O_ 2, B,_ < Bu < BM. Let N > f, //1 = //2 = 0. Let G > 9, and Mo > 0,

T* > 0 be arbitrarily large. Then there exists N* = N*(Mo,T*,#3,#2) such that for IIut(0)llo < Mo and

N > N*, there exists a unique regular solution Ut(t) of the 3D rotating Euler-Boussinesq equations which

belongs to Ho for 0 < t < T*. For Mo fixed, T* --+ +co as N* -+ +oc with explicit uniform dependence

of T* on M_, #3, #._, N*. Simultaneously, we can take arbitrary large (but bounded) set of initial data:

Mo --+ +co if N* --+ +co, for fixed T*.

If we do not require explicit uniform estimates of T* (equivalently N*) in terms of the geometric param-

eters a2, a3 and the measures P2, t'3, we can obtain the following "Poor Man's" long-time existence theorem

with weaker smoothness assumptions, valid for non-resonant Bu, but holding for all 02 and a2 and all 03

and a 3 (no constraints on 2-wave resonances):

Theorem 6.4:

Let N > f, //1 = u2 = O, Bm <_ Bu <_ BM, 1/Bu _ O_(02,03). Let -_/I4 > 0, T' > 0 be arbitrary large.

Then there exists N1 such that if IIUI(0)II4 _< M4 and N >_ N_, there exists a unique regular solution U*(t),

0 < t < T' of the 3D rotating Euler-Boussinesq equations, which belongs to H4 as 0 < t < T'. For M4 fixed,

T _ --+ +co with N1 --->+co. Simultaneously we can take arbitrary large (but bounded) sets of initial data:

1144-+ +co if N1 -+ +co, for fixed T'. The above holds for all a2, a3, 0 < a2, a3 _< 1.

Finally, using techniques fl'om BMN (1996a, b, d) and the fact that the effective spectral eddy viscosities

lie between //1 and //2 (see Section 3), we obtain the regularity for all times for the 3D rotating Boussinesq-

Navier Stokes equations (the so called "primitive" equations, not to be confused with equations associated

to hydrostatic pressure hypothesis). This theorem describes the situation when N is fixed, large enough and

B,_ < Bu < BM. The Navier-Stokes equations are forced by a force F(t) smooth enough. The situation is

that of non-smooth and arbitrary large initial data in H0. Then weak Leray solutions exist with maybe a

blow-up in H1.

Theorem 6.5:

Let //1 > O, u2 > O, N > f, Bm <_ Bu <_ BM, 1/Bu C� @_(02,03). Let IIfll4 + IIc)tFl[1 < Mo4 for all

t _> 0, [IUt(0)[Io _< Mo. Let T = Mg///m, where um= rain(//1,//2); 5b depends only on IIUt(0)llo,//1, u2.
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Let N' be a number which depends only on M04, Pl, /22, a2, a3. Then for every fixed N _> N' and for any

weak solution Ut(t) of the 3D rotating Boussinesq-Navier-Stokes equations which is defined on [0,(r] and

satisfies the classical energy inequality on [0, 2fl], the following proposition is true: U t (t) can be extended to

0 < t < +oo and it is regular for T _< t < +oo; it belongs to H4 and IIgT(t)ll4 _<C1(M04,_, _) for every

t _> T. It F is time-independent there exists a global attractor of the "primitive" equations of geophysics,

which is bounded in H4, has a finite fractal dimension, and every weak solution is attracted to the global

attractor as t --+ +oo.

Remark 6.3:

No "preparation" of initial conditions is needed, contrary to the special restricted results of Chemin (1995).

This theorem holds for all a2, 0 < a2 _< 1. This theorem resolves problems of existence of attractors of for

the "primitive" equations of geophysics raised by Lions, Temam and Wang (1994). These authors are able

to give only conditional theorems assuming a priori regularity in 3D. We demonstrate the regularizing effects

of mixed rotation/stratification ill the Bu = O(1) regimes.

7 Concluding remarks

In this paper, we have treated the problem of strongly stratified limit of rotating Boussinesq equations via. two

complementary approaches. First, we have illustrated the procedure for obtaining the dynamical decoupling

of the vortical and inertial-gravity wave components of the total flow field. The 'split' of the energy transfer

of the vortical and the wave components is established. As a result, analysis of 3D Boussinesq system has

been reduced to several simple, well defined steps. We give explicit phase formulas for the Doppler phase shift

induced by the interaction between the waves and the mean flow. In the regime of strong stratification and

weak rotation we proposed regularized reduced equations with control of vertical shearing for all times. The

regularizing effect of weak rotation principally differs from previously known regulariza.tions which are based

on vertical viscosity. Second, we have utilized the fact that the time scales of vortical and inertial-gravity

wave components are disparate. Several useful results can be deduced without going through the steps

outlined above. For ageostrophic dynamics, we demonstrate gradual unfreezing of energy cascades as Bu

varies from zero to infinity. The energy spectrum and the anisotropic spectral eddy viscosity can be derived

with an explicit dependence on the anisotropic rotation/stratification time scale. This time scale, in turn,

depends on the aspect ratio parameter (ratio of the vertical and the horizontal length scale). Our analysis

provides a potential context for investigations of the Garrett-Munk spectrum induced by the interaction

between inertio-gravity waves and turbulence (Garrett and Munk, 1979).
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[Dili2iaA Appendix: Dependence of the coefficients wk._ on # = f/N

ili2ia
The coefficients Qk,,, (#) given by Eqs. (2.25)-(2.281 can be expanded in powers of # = f/N as follows

012 _2p_.,(. (k' A m') 2
Qkm.(#) = ¢.[k'[Im'lln'l + °('3)'

Q,,,k,_(_) = -_#
Ik'lln'll_[I,-'[[,,.'[

+ O(p3)

QO21 , (,_,(k' A m') 2

QOll /-)o15 1 . k_(k"A ._.')(n_mJ.._' + I,,/l=l.d _)
k,,._(,) = (o)- _,-_k.,.. _7]l.ql..i

9 /
.._101 ," ,, 101 1 2k;,,%(k /x,-,,.')(_._k'.,-,,'-_l,-,,'l :_)

¢mlk II-_IInI

+o(,h,

+ o(p4),

/ / 2 ' 9
no"" , o"" 1 2 k A rn , h a m_ n 5 (k' A ?_/)?g_,3113m/ " 11,I
,,z,_;,;',,ttt)= Ok_7,,(0) - _t' _-t_ + i.,,i _+ _) + ,"_ ]-k_]l_l_#,] + O(#4),

Qg;;,,(#)',o'_ =o_ #__(k' A .,,')(k_I..'1_- ,_,,' •k')= Qmk,,(0)+ + 0(/*4), where

/¢/ _T_/ @-/
011 A ('_3"_""-_' + I_'l_l.'l_), Qkm.(0)°2_= (k' Am')Qk,,_...(o)= Ik'll-,.'ll,,'llml ,_ I"1 '

_o, ,%(_,'/x-_')(-_.at,'.m.'- k31._'l2) _o_.
Qmkn(O)= I,_'11-,'11,_'11_.1 , Q._k,,(0)= 0,

QO12 021 /)102 201
kmn(O) = _mknQkmn(O) = (0) = Qmkn(O) = O.
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